
 APPLICATION NOTE

RX and RL78 Series Rev.1.00
PID Controller Software for RX and RL78 Mar 31, 2013

Introduction

PID – Proportional-Integral-Derivative Controller is the most commonly used feedback controller, and it is
widely used in industrial control system. A PID controller calculates an “error” value as the difference
between process variable and a desired setpoint. The controller attempts to minimize the error by adjusting
the process control intputs.

The PID controller can be applied to any system that requires close-loop control. For example, speed control,
temperature control, brightness control, etc.

Where:

u(t): Controller output,

Kp: Proportional gain

Ki: Integral gain

Kd: Derivative gain

е: Error = SP-PV

t: Time or instantaneous time
(the present)

т: Variable of integration A PID Controller block diagram

A PID Algorithm

This application note introduced a standard & optimized PID control algorithm for RX and RL78 MCU
Benchmark of the algorithm is also described.

Target Device

RX600, RL78

Contents

1. Configuration... 2

2. PID Controller Data Structure & Standard API ... 3

3. Use of PID Controller .. 10

4. PID Controller Benchmark .. 11

5. Evaluation Results of the PID Controller... 16

Rev.1.00 Page 1 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

1. Configuration

PID Controller is a software control algorithm which being widely adopted in close loop control system.
Diagram below shows the software configuration for an application.

Usage of PID conroller

Rev.1.00 Page 2 of 20

Mar 31, 2013

A floating point PID controller is demonstrated with RX simulator. For RX, HEW with RX simulator is used
for simulation.

A fix point (integer) PID controller is demonstrated with RL78 simulator. For RL78, CubeSuite+ with RL78
Simulator for simulation.

There are two key files for PID controller, PID.h and PID.c:

PID.h: Consists declaration of PID controller data structure and related function.

PID.c: Consists 2 functions of PID controller, PID_Init() and PID_Control(). It is for initialization and
calculation.

Usage example of PID controller can be found in main.c file.

Detail of PID controller explanation in next chapter.

Note:

The PID controller software provides a standard API and algorithm for RX and RL78 MCU. Actual
parameter tuning of PID controller in the application program is needed.

Event
Capture

**program example:

void main(void)
{

 while (1)
 {
 long cu_sp; /* current speed */
 long new_sp; /* new speed setting */

 ...
 ...
 /* check current speed */

 cu_sp = Read_Current_SP();

 /* PID control */

 /* Returns a new setting according to
 given parameters */

 pid_par.Fdb = cu_sp;
 pid_par.calc(&pid_par);
 new_sp = pid_par.Out;

 /* Apply new setting to timer */

 Set_PWM_Output(new_sp);
 ...

 ...
 } /*while(1)*/

}

PID algorithm
API

User Application

1. Read
back

current
Speed

 RX & RL78 MCU

MotorSpeed (RPM)
Sensor

PWM Speed
control

Timer Unit
(Pulse Capture)

3. Set PWM
output

according
to PID
result

Timer Unit
(PWM Output)

2. Send current
speed and other

parameters

**Example Configuration

Feedback

Calculate and
apply the result

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 3 of 20

Mar 31, 2013

2. PID Controller Data Structure & Standard API

This section describes the PID controller components as follow:

 floating point fix point

Data Structure fPID_PAR PID_PAR

API fPID_Init() PID_Init()

 fPID_Control() PID_Control()

It is easy differentiate floating point operation and fix point operation by ‘f’ at the 1st character. Where ‘f’
means floating point, without ‘f’ is fix point.

In this application note, RX use floating point, and RL78 use fix point to illustrate how to use the PID
controller software.

2.1 PID Controller Data Structure

To create a standard API for PID function in RX (floating point) and RL78 (fix point) core MCU, a standard
structure named “fPID_PAR”, “PID_PAR” for PID function is created in PID.h file and shown as below. As
RX MCU contains hardware FPU, float data type is defined for all variables and operation will be in floating
point. For RL78, it use long data type for all variables and operation will be in fix point.

There are mainly three types of data consisted in the Data structure:

1. Input/Output: Target value, current value and calculated value.

2. Parameter: Constants for calculation, limit comparison. Need tuning, specially the gains.

3. Variable: For Calculation.

Floating point PID data structure:

typedef struct fPID_PAR {

 _fl Ref; // Input: Reference input

 _fl Fdb; // Input: Feedback input

 _fl Err; // Variable: Error

 _fl Kp; // Parameter: Proportional gain

 _fl Up; // Variable: Proportional output

 _fl Ui; // Variable: Integral output

 _fl Ud; // Variable: Derivative output

 _fl OutPreSat; // Variable: Pre-saturated output

 _fl IntegralMax; // Parameter : Integral maximum value

 _fl IntegralMin; // Parameter : Integral minimum value

 _fl IntegralErr; // Variable: Saturated difference

 _fl OutMax; // Parameter: Maximum output

 _fl OutMin; // Parameter: Minimum output

 _fl Out; // Output: PID output

 _fl SatErr; // Variable: Saturated difference

 _fl Ki; // Parameter: Integral gain

 _fl Kc; // Parameter: Integral correction gain

 _fl Kd; // Parameter: Derivative gain

 _fl Up1; // History: Previous proportional output

 _fl Dt; // Parameter: time constant

 void (*calc)(); // Pointer to calculation function

} fPID_PAR;

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 4 of 20

Mar 31, 2013

Fix point PID data structure:

typedef struct PID_PAR {
 _l Ref; // Input: Reference input
 _l Fdb; // Input: Feedback input
 _l Err; // Variable: Error
 _l Kp; // Parameter: Proportional gain
 _l Up; // Variable: Proportional output
 _l Ui; // Variable: Integral output
 _l Ud; // Variable: Derivative output
 _l OutPreSat; // Variable: Pre-saturated output
 _l IntegralMax; // Parameter : Integral maximum value
 _l IntegralMin; // Parameter : Integral minimum value
 _l IntegralErr; // Variable: Saturated difference
 _l OutMax; // Parameter: Maximum output
 _l OutMin; // Parameter: Minimum output
 _l Out; // Output: PID output
 _l SatErr; // Variable: Saturated difference
 _l Ki; // Parameter: Integral gain
 _l Kc; // Parameter: Integral correction gain
 _l Kd; // Parameter: Derivative gain
 _l Up1; // History: Previous proportional output
 _l Dt; // Parameter: time constant
 void (*calc)(); // Pointer to calculation function
} PID_PAR;

Inside the PID Controller data structure, there are 20 variables defined in either float/long data type plus 1
function pointer which totally occupy 84 bytes. To use this standard PID structure, it must firstly initialize
the structure. The following section describes how to initialize the PID structure.

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 5 of 20

Mar 31, 2013

2.2 PID Controller Standard API
There are mainly 2-sets (floating point and fix point) of API for PID Controller:

fPID_Init(), PID_Init(): Data structure initialization

fPID_Control(), PID_Control(): PID controller main calculation routine

2.2.1 PID Controller Initialization – fPID_Init, PID_Init

It is important that to initialize the PID controller before to use it. Improper initialize PID controller resulting
damage to the system.

For parameters, there are four tuning constants Kp: Proportional gain, Ki: Integral gain, Kc: Integral
correction gain, and Kd: Derivative gain. These gains controls the PID output characteristic, these
parameters have to be tuned properly. The default values of the gains are 1. The rest of parameters are limit
of PID controller. User has to give the upper/lower limit for the calculated output. It is more for safety
consideration.

For variables, as they are for calculation purpose, it should be set to ‘0’ as initialize value. For inputs, ‘Ref’
is the target value, where ‘Fdb’ is the current value. For output, ‘Out’ is the calculated value. Besides, other
than the variables, the function pointer is also needed to assign a PID calculation function into it. In the
example, the address of the fPID_Control function has been put into the function pointer.

Example below shows the initialization of floating point PID controller:

/**/
/* Description: Floating point PID Control for RX */
/* Initialization */
/**/
void fPID_Init(void)
{
 /* Initial Value */
 pid_par.Ref = Target_dist; // Input: Reference input
 pid_par.Fdb = 0; // Input: Feedback input
 pid_par.Err = 0; // Variable: Error
 pid_par.Kp = 1; // Parameter: Proportional gain
 pid_par.Up = 0; // Variable: Proportional output
 pid_par.Ui = 0; // Variable: Integral output
 pid_par.Ud = 0; // Variable: Derivative output
 pid_par.OutPreSat = 0; // Variable: Pre-saturated output
 pid_par.IntegralMax=99999; // Parameter : Maximum Integral value
 pid_par.IntegralMin=-99999; // Parameter : Maximum Integral value
 pid_par.IntegralErr = 0; // Variable: Integral error accumulator
 pid_par.OutMax = 99999; // Parameter: Maximum output
 pid_par.OutMin = -99999; // Parameter: Minimum output
 pid_par.Out = 0; // Output: PID output
 pid_par.SatErr = 0; // Variable: Saturated difference
 pid_par.Ki = 1; // Parameter: Integral gain
 pid_par.Kc = 1; // Parameter: Integral correction gain
 pid_par.Kd = 1; // Parameter: Derivative gain
 pid_par.Up1 = 0; // History: Previous proportional output
 pid_par.Dt = 0.01; // time constant
 pid_par.calc = (&fPID_Control); // Pointer to calculation function
}

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 6 of 20

Mar 31, 2013

Example below shows the initialization of fix point PID controller, note that all values should be integers
(long data type).

/**/

/* Description: Fix point PID Control for RL78 */

/* Initialization */

/**/

void PID_Init(void)
{
 /* Initial Value */
 pid_par.Ref = Target_dist; // Input: Reference input
 pid_par.Fdb = 0; // Input: Feedback input
 pid_par.Err = 0; // Variable: Error
 pid_par.Kp = 1; // Parameter: Proportional gain
 pid_par.Up = 0; // Variable: Proportional output
 pid_par.Ui = 0; // Variable: Integral output
 pid_par.Ud = 0; // Variable: Derivative output
 pid_par.OutPreSat = 0; // Variable: Pre-saturated output
 pid_par.IntegralMax=MAX_LIMIT; // Parameter : Maximum Integral value
 pid_par.IntegralMin=MIN_LIMIT; // Parameter : Maximum Integral value
 pid_par.IntegralErr = 0; // Variable: Integral erro accumulator
 pid_par.OutMax = MAX_LIMIT; // Parameter: Maximum output
 pid_par.OutMin = MIN_LIMIT; // Parameter: Minimum output
 pid_par.Out = 0; // Output: PID output
 pid_par.SatErr = 0; // Variable: Saturated difference
 pid_par.Ki = 1; // Parameter: Integral gain
 pid_par.Kc = 1; // Parameter: Integral correction gain
 pid_par.Kd = 1; // Parameter: Derivative gain
 pid_par.Up1 = 0; // History: Previous proportional output
 pid_par.Dt = 1; // time constant (unit)
 pid_par.calc = (&PID_Control); // Pointer to calculation function
}

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 7 of 20

Mar 31, 2013

2.2.2 PID Control– fPID_Control, PID_Control

The theory of PID controller can be easily found on Internet. Basically it is the sum of Proportional terms,
Integral terms, and Derivative terms.

Equation of PID control often describes as below:

pid_out = (Pe * Kp) + (Ie * Ki) + (De * Kd) Calculation perform in a fixed period (dt)

Where:

Pe Current error value, (Set-point - present value)
Proportional terms

Kp Proportional gain, tuning parameter

Ie Sum of instantaneous error, (accumulation of Pe*dt)
Integral terms

Ki Integral gain, tuning parameter

De Slope of error over time, ((Pe - pervious Pe)/dt)
Derivative terms

Kd Derivative gain, tuning parameter

And, pseudocode for PID control example is found:

/* Pseudocode */
previous_error = 0
integral = 0
start:
 error = setpoint - measured_value
 integral = integral + error*dt
 derivative = (error - previous_error)/dt
 output = Kp*error + Ki*integral + Kd*derivative
 previous_error = error
 wait(dt)
 goto start
/* Pseudocode end */

Based on the pseudocode, a PID Controller function is made as below. Floating point and Fix point PID
controller are basically use the same source code, but the variables are in different data types, float vs long.
For floating point calculation, fPID_Control() should be used. For fix point calculation, PID_Control should
be used.

In addition to the pseudocode, Integral terms MAX/MIN are checked, as well as calculated output
MAX/MIN. As mentioned in pervious section, the maximum and minimum values are for safety
consideration, which would limited the output in order to protect the system.

User should set this value carefully according to the system specification.

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 8 of 20

Mar 31, 2013

Floating point PID controller:

/**/
/* Description: Fix point PID Control for RX */
/**/
/* Input: address of pid_parameters: */
/* - Constant (float) Kp, Ki, Kd */
/* - Variable (float) Up, Ui, Ud */
/* address of calculated (fix) result */
/* additional parameters (TBD) */
/* Output: pid->Err:‘0’ Calculation OK */
/* pid->Err:‘-1’ Calculation outside limit */
/**/
/* Remark: This function should be call periodly */
/**/
void fPID_Control(fPID_PAR *pid)
{
 float cal_result;
 float present_err;

 /*** SatErr, Kc not used ***/
 /* present error */
 present_err = pid->Ref - pid->Fdb;

 /* Integral term calculation */
 /* Add Integral terms (Ui * Ki) */
 cal_result= pid->Ki * present_err;

 if (cal_result> pid->IntegralMax)
 {
 cal_result= pid->IntegralMax;
 }
 else if (cal_result< pid->IntegralMin)
 {
 cal_result= pid->IntegralMin;
 }

 /* Add Proportional terms (Pe * Kp) */
 cal_result += pid->Kp * present_err;

 /* Sum of instantaneous error */
 pid->Ui += present_err * pid->Dt;

 /* Slope of error over time */
 pid->Ud = (present_err - pid->Up1)/(pid->Dt);

 /* Add Derivative terms (De * Kd) */
 cal_result += pid->Kd * pid->Ud;

 pid->Up1 = present_err;

 /* Result check here */
 if (cal_result > pid->OutMax)
 {
 pid->Out = pid->OutMax;
 pid->Err = -1;
 }
 else if (cal_result < pid->OutMin)
 {
 pid->Out = pid->OutMin;
 pid->Err = -1;
 }
 else
 {
 pid->Out = cal_result;
 pid->Err = 0;
 }
}

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 9 of 20

Mar 31, 2013

Fix point PID controller:

/**/
/* Description: Fix point PID Control for RL78 */
/**/
/* Input: address of pid_parameters: */
/* - Constant (long) Kp, Ki, Kd */
/* - Variable (long) Up, Ui, Ud */
/* address of calculated (fix) result */
/* additional parameters (TBD) */
/* Output: pid->Err:‘0’ Calculation OK */
/* pid->Err:‘-1’ Calculation outside limit */
/**/
/* Remark: This function should be call periodly */
/**/
void PID_Control(PID_PAR *pid)
{
 long cal_result;
 long present_err;

 /*** SatErr, Kc not used ***/
 /* present error */
 present_err = pid->Ref - pid->Fdb;

 /* Integral term calculation */
 /* Add Integral terms (Ui * Ki) */
 cal_result= pid->Ki * present_err;

 if (cal_result> pid->IntegralMax)
 {
 cal_result= pid->IntegralMax;
 }
 else if (cal_result< pid->IntegralMin)
 {
 cal_result= pid->IntegralMin;
 }

 /* Add Proportional terms (Pe * Kp) */
 cal_result += pid->Kp * present_err;

 /* Sum of instantaneous error */
 pid->Ui += present_err * pid->Dt;

 /* Slope of error over time */
 pid->Ud = (present_err - pid->Up1)/(pid->Dt);

 /* Add Derivative terms (De * Kd) */
 cal_result += pid->Kd * pid->Ud;

 pid->Up1 = present_err;

 /* Result check here */
 if (cal_result > pid->OutMax)
 {
 pid->Out = pid->OutMax;
 pid->Err = -1;
 }
 else if (cal_result < pid->OutMin)
 {
 pid->Out = pid->OutMin;
 pid->Err = -1;
 }
 else
 {
 pid->Out = cal_result;
 pid->Err = 0;
 }
}

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 10 of 20

Mar 31, 2013

3. Use of PID Controller

A simple example shows how to use the PID controller. In the example, the PID controller is initialized, with
a target speed. For feedback control, current speed is fetched periodically and put into PID controller for
calculation. After that, the calculated result will be used as new speed. This process continues, until the
current speed reach the target.

#define TARGET_SPEED 100

struct PID_PAR pid_par; /* PID variable */

void main()
{

 fPID_Init();
 pid_par.Ref = TARGET_SPEED;

 While(1)
 {
 /* Get Current Speed */
 get_speed(&Feedback);
 /* PID */
 pid_par.Fdb = Feedback;
 pid_par.calc(&pid_par);
 Cal_Result = pid_par.Out;

 /* Set speed */
 set_speed(Cal_Result);
 }
}

RX and RL78 Series PID Controller Software for RX and RL78

4. PID Controller Benchmark

This section describes the PID controller performance on RX and RL78 respectively. RX is using floating
point PID controller for evaluation, and RL78 is using fix point PID controller for evaluation.

4.1 Floating point PID Controller on RX

RX600 core is including FPU architecture that supports floating point calculation. In addition, the RX
compiler provides options for different optimization levels for execution speed which might be worth to
study of how the optimization level is selected affect the calculation speed of the PID controller. So in this
section, it is tried to compare the execution cycle of the PID controller using different level of speed
optimization options and RX simulator is used for the measurement.

To measure the execute cycle, S/W break point will be set before and after the PID controller,

Meanwhile, the execution cycle has been calculated using the cycle information under “Status>Platform”
windows.

Rev.1.00 Page 11 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

4.1.1 Execution cycle measurement of different optimization levels with FPU enabled

In order to perform the measurement, it is necessary to change the optimization level setting inside the “RX
standard toolchain” which is shown as below. There are totally 4 levels which are 0,1,2,Max that can be
selected. All these options are evaluated and result is shown on table 3-1.

Figure. Optimization setting window

Table 3-1, No of execution cycle count for different optimization level

Compilation with FPU enabled

Optimization level for speed 0 1 2 MAX

No. execution cycle 168 105 98 98

Remark: Standard Library Optimization for speed = 2 with FPU enabled

4.1.2 Execution cycle measurement of different optimization levels with FPU disabled
Besides, disable the FPU function in C Compiler is also tried for the benchmarking.

Compilation with FPU disabled

Optimization level for speed 0 1 2 MAX

No. execution cycle 769 724 730 594

Remark: Standard Library Optimization for speed = 2 with FPU enabled

Rev.1.00 Page 12 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

In case of 100MHz operation, each execution cycle consumes 10ns. In case of FPU enabled, the PID loop
can be completed around 1us. However, if disabled the FPU, it takes at least 6us to complete 1 PID loop no
matter optimization level is 0 or max which is 6 times higher than using FPU.

0

100

200

300

400

500

600

700

800

0 1 2 MAX

FPU enabled

FPU disabled

Optimization level

E
x
e
c
u
t
i
o
n

c
y
c
l
e

Figure 1 PID execution cycle measurements with different optimization levels and enabled/disabled FPU.

Rev.1.00 Page 13 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

4.2 Fix point PID Controller on RL78

Unlike RX, RL78 has no hardware FPU to support floating point calculation. To enhance the performance,
fix point (integer) calculation is used in the PID controller. For optimization, RL78 compiler also provides
different types of optimization. In this section, it is tried to compare the execution cycle of the PID controller
using different level of optimization options and RL78 simulator is used for the measurement. 32MHz clock
is used for simulation.

To measure the execute time, S/W break point will be set before and after the PID controller, meanwhile, the
execution time has been measured using timer in status bar of CubeSuite+ (red box below).

Rev.1.00 Page 14 of 20

Mar 31, 2013

4.2.1 Execution time measurement of different type of optimization

In order to perform the measurement, it is necessary to change the optimization types setting inside the
“CA78K0R (Build Tool)” which is shown as below. There are totally 5 types of optimization. In
measurement, 4 types were tested – Speed, Standard, Code size and no optimize. These options are evaluated
and result is shown on table 4-1.

Figure. Optimization setting window

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 15 of 20

Mar 31, 2013

Table 4-1, Execution time for different optimization level

RL78 Simulator, 32MHz Clock, 31.25ns/cyc

Type of Optimization None (-nq) Standard (-qx2) Speed (-qx1) Code (-qx3)

Measured execution time 17.218us 17.218us 17.218us 19.406us

Code Size of PID_Control() 435 bytes 433 bytes 435 bytes 339 bytes

From the table results above, it is shown that there is no different for optimization type – none, standard and
speed. For code size optimization, although the code has 100-bytes less, the time taken also longer to
complete the PID calculation.

4.3 Further Optimization

In some application like motor control, which Derivative term is small that can be ignored. In this case, the
algorithm can be simplified to: pid_out = (Pe * Kp) + (Ie * Ki). Hence it is known as PI Controller.

RX and RL78 Series PID Controller Software for RX and RL78

5. Evaluation Results of the PID Controller

To evaluate the RX PID Controller, a S/W truck model has been applied in the testing program and the
response of the truck distance is calculated and stored into the array. After that, the content of the array can
be plotted using waveform window in simulator to confirm the function of the PID Controller and also it can
be observed that different setting value of Kp, Ki and Kd of how to influence the response of the system.

A) Kp=1, Ki=1, Kd=1

In this case, the PID response shows that the output is slowly approach the target setting.

B) Kp = 10, Ki=1, Kd=1

In this case, increase the Proportional gain results speed up the time to reach the target, but slightly overshoot
is introduced.

Rev.1.00 Page 16 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

C) Kp=100, Ki=1, Kd=1

In this case, further increase the Proportional gain results further speed up the time to reach the target, but
more overshoot is introduced.

D) Kp=1, Ki=10, Kd=1

In this case, increase the Integral gain results speed up the time to reach the target, but slightly overshoot is
introduced.

Rev.1.00 Page 17 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

E) Kp=1, Ki=100, Kd=1

In this case, further increase the Integral gain results further speed up the time to reach the target, but more
overshoot is introduced.

F) Kp=1, Ki=1, Kd=10

In this case, increase the Derivative gain results oscillation, although the output result is toward to the target
setting, but it cannot be used.

Rev.1.00 Page 18 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

G) Kp=1, Ki=1, Kd=100

In this case, further increase the Derivative gain results more oscillation, basically it cannot be used.

H) Kp=10, Ki=10, Kd=2

In this case, Proportional gain and Integral gain are increase to 10, with the Derivative gain increase to 2.
The PID response shows that the setup time has been reduced and overshoot has been also reduced.

5.1 Summary
In conclusion, a well tuned PID controller will improve the system response. A poor tuned PID controller
could results damage to the system. So the tuning of PID controller is important for the application software.

Table below shows the effects of increasing a parameter independently:

Parameter Rise time Overshoot Settling time
Steady-state

error
Stability

Kp Decrease Increase Small change Decrease Degrade

Ki Decrease Increase Increase Eliminate Degrade

Kd Minor change Decrease Decrease No effect Improve if Kd small

Rev.1.00 Page 19 of 20

Mar 31, 2013

RX and RL78 Series PID Controller Software for RX and RL78

Rev.1.00 Page 20 of 20

Mar 31, 2013

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Description
Rev. Date Page Summary
1.00 Mar.13. — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Configuration
	2. PID Controller Data Structure & Standard API
	2.1 PID Controller Data Structure
	2.2 PID Controller Standard API
	2.2.1 PID Controller Initialization – fPID_Init, PID_Init
	2.2.2 PID Control– fPID_Control, PID_Control

	3. Use of PID Controller
	4. PID Controller Benchmark
	4.1 Floating point PID Controller on RX
	4.1.1 Execution cycle measurement of different optimization levels with FPU enabled
	4.1.2 Execution cycle measurement of different optimization levels with FPU disabled

	4.2 Fix point PID Controller on RL78
	4.2.1 Execution time measurement of different type of optimization

	4.3 Further Optimization

	5. Evaluation Results of the PID Controller
	5.1 Summary

